
SPRING 2025: MATH 590 DAILY UPDATE

Thursday, May 13. We began class by reviewing the basic properties of inner product discussed in the
previous lecture. We also finished an example begun at the end of the previous lecture demonstrating Basic
Fact (ii) b/

We then began a lengthy discussion of how to find an orthonormal basis for a subspace W of a vector space
V , starting with a given basis. We did this in stages. We first took a vector space V with subspace W
having basis {v1, v2}. Taking w1 = v1, we wrote w2 = v2 − αw1 and first noted that {w1, w2} span W . We

then set ⟨w1, w2⟩ = 0 and found α = ⟨v2,w1⟩
⟨w1,w1⟩ , so that w2 := v2 − ⟨v2,w1⟩

⟨w1,w1⟩w1 is orthogonal to w1.

We then analyzed the case W has basis {v1, v2, vr}. We set w1 := v1. We also set w2 := v2 − ⟨v2,w1⟩
⟨w1,w1⟩w1,

which by the previous case gives orthogonal vectors w1, w2. We then set w3 := v3 − αw1 − βw2, and solved

for α, β in the equations ⟨w3, w1⟩ = 0 and ⟨w3, w2⟩ = 0. This yielded w3 = v3 − ⟨v3,w1⟩
⟨w1,w1⟩w1 − ⟨v3,w2⟩

⟨w2,w2⟩w2, and

thus an orthogonal basis {w1, w2, w3} for W . We then stated the

Gram-Schmidt Process. Let V be a vector space with inner product ⟨ , ⟩ and suppose {v1, . . . , vr} is a
basis for the subspace W ⊆ V . Then there exists an orthogonal set of vectors {w1, . . . , wr} which forms a
basis for W . Moreover, the vectors w1, . . . , wr can be constructed inductively as follows:

(i) w1 := v1.
(ii) If w1, . . . , wi have been constructed so that Span{w1, . . . , wi} = Span{v1, . . . , vi} and w1, . . . , wi are

mutually orthogonal, then taking

wi+1 = vi+1 −
⟨vi+1, w1⟩
⟨w1, w1⟩

· w1 − · · · − ⟨vi+1, wi⟩
⟨wi, wi⟩

· wi,

we have that Span{w1, . . . , wi+1} = Span{v1, . . . , vi+1} and {w1, . . . , wi+1} is an orthogonal set of
vectors. When i+ 1 = r, the process is complete.

We then noted the immediate

Corollary. Let V be a vector space with an inner product and W ⊆ V be a subspace. Then W has an
orthonormal basis.

We ended class by starting with the basis {1, x, x2} for P2(R) with inner product ⟨f, g⟩ :=
∫ 1

−1
fg dx, and

using the Gram-Schmidt process to find an orthogonal basis. We also noted that the G-S process is inner

product specific. In other words, if instead of defining ⟨f, g⟩ =
∫ 1

−1
fg dx on P2(R), we defined an different

inner product, {f, g} :=
∫ 1

0
fg dx, then the process will lead to a different orthogonal basis for P2(R).

Tuesday, March 11. The first fifteen minutes of class were devoted to Quiz 6. We then once again stated the
Diagonalizability Theorem and illustrated how the assumption that A is diagonalizable implies the conditions
stated in the theorem for the case of a 7× 7 matrix A satisfying P−1AP = D(λ1, λ1, λ2, λ2, λ2, λ3, λ3).

We then began a discussion of inner products, first by reviewing the dot product of vectors in R3 and
listing the various properties satisfied by the dot product. We noted that if v, w ∈ R3 are column vectors,
then the dot product can be expressed as a matrix product vt · w. We then gave the following general
definition.

Definition. Let V be a vector space over R. An inner product on V is a function ⟨−,−⟩ : V × V −→ R
satisfying the following properties for all vi, wi ∈ V and λ ∈ R.

(i) ⟨v, w⟩ = ⟨w, v⟩.
(ii) ⟨v1 + v2, w⟩ = ⟨v1, w⟩+ ⟨v2, w⟩.
(iii) ⟨v, w1 + w2⟩ = ⟨v, w1⟩+ ⟨v, w1⟩.
(iv) ⟨λv,w⟩ = λ⟨v, w⟩ = ⟨v, λw⟩.
(v) ⟨v, v⟩ ≥ 0 and ⟨v, w⟩ = 0 if and only if v = 0⃗.
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We pointed out that with these axioms, one can then define the notions of length and orthogonality, just like
one does using the dot product. Namely, the length of v, denoted ||v||, is

√
⟨, v, v⟩ and the angle between

v, w is cos−1( ⟨v,w⟩
||v||·||w|| ). Thus, v is orthogonal to w if and only if ⟨v, w⟩ = 0.

We then gave the following examples of inner products:

(i) V = Rn, where for column vectors v, w ∈ Rn, we define ⟨v, w⟩ = vt · w (matrix multiplication).
(iii) Let V = Pn(R), be the space of real polynomials of degree less than or equal to n and define

⟨f(x), g(x)⟩ :=
∫ 1

−1
f(x)g(x) dx.

(iii) Let V = Mn(R), and set ⟨A,B⟩ := tr(AtB).

This was followed by a discussion and proof of

Basic Fact. Suppose V has an inner product ⟨−,−⟩.
(i) If v1, . . . , vr ∈ V are non-zero, mutually orthogonal vectors, then v1, . . . , vr are linearly independent.
(ii) Suppose {u1, . . . , ur} is a basis for V such that: (a) u1, . . . , ur are mutually orthogonal and (b) Each

ui has length one. Then, for any v ∈ V ,

v = ⟨v, u1⟩u1 + ⟨v, u2⟩u2 + · · ·+ ⟨v, ur⟩ur.

We noted that the conditions in (ii) are equivalent to saying that ⟨ui, uj⟩ = 0 if i ̸= j and ⟨ui, , uj⟩ = 1, if
i = j. A basis with this property is called an orthonormal basis, which we will abbreviate to ONB.

We ended class by showing that u1 := 1√
2
·

−1
1
0

 , u2 := 1√
3
·

1
1
1

 , u3 := 1√
6
·

 1
1
−2

 is an ONB for R3 and

writing v =

 2
7
13

 in terms of this basis using (iib) above.

Thursday, March 6. We continued our discussion of diagonalizability by recalling the theorem presented at
the end of the previous lecture. For an n×n matrix over F , with eigenvalue λ, we then defined the algebraic
multiplicity of λ to be e if pA(x) = (x − λ)eg(x), where g(λ) ̸= 0 and, the geometric multiplicity of λ to be

dim(Eλ). We then calculated each of these multiplicities for the matrices

(
2 1
0 2

)
and

(
1 2
4 3

)
, noting that,

in each case, the geometric multiplicity did not exceed the algebraic multiplicity, and that they were equal
in the second case, which was diagonalizable. This lead to the following

Fundamental Relation Between Algebraic and Geometric Multiplicity. Suppose A is an n × n
matrix with eigenvalue λ. Then the geometric multiplicity of λ is less than or equal to the algebraic
multiplicity of λ.

We gave a proof of this theorem in class. Note to students. There was a typo in what I wrote in class
today for the proof. In the step where we compared the first column of AP with the first column of PB, I
should have written,

λv1 = b11v1 + b21v2 + · · ·+ bn1ur,

instead of the last term being bn1Aur. The correct equation above is two linear combinations of the basis
elements v1, v2, . . . , ve+1, u1, . . . ur, which shows λ = b11 and 0 = bj1, for 2 ≤ j ≤ n. The rest of the proof
continues as shown in class.

We then stated the all important

Diagonalizability Theorem. Let A be an n × n matrix. Then A is diagonalizable if and only if we can
write pA(x) = (x − λ1)

e1 · · · (x − λr)
er and dim(Eλ1) = ei, for all 1 ≤ i ≤ r. Here we are assuming the λi

are distinct and each ei ≥ 1.

Rather than giving a proof in the general case, we gave an in depth analysis of what happens when n = 2
or n = 3. We concluded this discussion by noting that if λ is an eigenvalue of A and dim(Eλ) = n, then
A = D(λ, λ, . . . , λ) was already a diagonal - in fact scalar - matrix.
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Tuesday, March 4. We began a discussion of the diagonalizability of matrices. Starting with A, and n × n
matrix over F , we defined A to be diagonalizable if there exists an invertible n× n matrix over F such that
P−1AP = D, where D is a diagonal matrix. We use the notation D(λ1, . . . , λn) to denote the n×n diagonal
matrix whose diagonal entries are λ1, . . . , λn. This was followed by a discussion of the following

Observations. In the notation above, we have:

(i) If D = D(λ1, . . . , λn), then λ1, . . . , λn are eigenvalues of A.
(ii) For λ1, . . . , λn as in (i), these are the only eigenvalues of A.
(iii) A is diagonalizable if and only if Fn has a basis consisting of eigenvectors of A.
(iv) Suppose A is diagonalizable, and the distinct values on the diagonal of P−1AP are λ1, . . . , λr. Then

pA(x) = (x− λ1)
e1 · · · (x− λr)

er .

(v) Suppose Av = λv, for v ∈ Fn and γ ∈ F . Then (A−γ·In)v = 0⃗, if λ = γ or (A−γ·In)v = (λ−γ)v ̸= 0⃗,
if λ ̸= γ.

We either proved each item in the observation, or illustrated an item by showing a proof when A is a 3× 3
matrix. We also pointed out that the proof of (iv) showed that if B = Q−1AQ, for Q an invertible n × n
matrix, then pB(x) = pA(x). We then emphasized the following

Important point. If A is diagonalizable, then pA(x) can be written as a product of linear polynomials,
i.e., pA(x) has all of tis roots in F . However, the converse does not hold, i.e., if pA(x) has all of its roots in

F , A need not be diagonalizable. The matrix A =

(
2 1
0 2

)
illustrates this point.

We finished class by discussing the following theorem and proving it for the case n = 3.

Theorem. Let A be an n×n matrix with entries in F and suppose that λ1, . . . , λr are distinct eigenvalues of
A. Take v1, . . . , vr such that vi is an eigenvector associated to λi. Then, v1, . . . , vr are linearly independent.
In particular, if A has n distinct eigenvalues in F , then A is diagonalizable.

We noted that the second statement follows from the first since if A has n distinct eigenvalues, it has n
linearly independent eigenvectors. Since Fn has dimension n, these vectors form a basis for Fn, and hence
A is diagonalizable, by Observation (iii) above.

Thursday, February 27. Exam 1,

Tuesday, February 25. The first fifteen minutes of class were devoted to Quiz 5. The remaining class time
was spent working in groups on the practice problems for Exam 1.

Thursday, February 20. The first fifteen minutes of class were devoted to Quiz 4. We then stated and
discussed the following theorem.

Theorem. Let A be an n]timesn matrix with coefficients in R or C.
(i) |A| ≠ 0.
(ii) A is invertible.

(iii) The null space of A is zero, i.e., if v ∈ Fn and Av = 0⃗,then v = 0⃗.
(iv) A reduces to In via elementary row operations.
(vi) The rows (respectively, columns) of A are linearly independent.
(vii) The rows (respectively, columns) of A span Fn.
(viii) The rows (respectively, columns) of A form a basis for Fn.
(ix) Any n× n system of linear equation with coefficient matrix A has a unique solution.

We then discussed the product rule for determinants: If A,B are n× n matrices, then |AB| = |A| · |B|. We
analyized the 2× 2 case by looking at elementary matrices, where an elementary matrix E is one obtained
from the identity matrix by employing an elementary row operation. We then observed: (i) If E is obtained
from I2 by applying the row operation R, then EA is obtained by applying the row operation R to A and
(ii) If E is an elementary matrix, |EA| = |E| · |A|. The proof of the formula in the n = 2 case then followed
from the facts that if |B| ̸= 0, B is a product of elementary matrices and if |B| = 0, B row reduces to a
matrix with one row consisting of 0s.
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We ended a class with a discussion of eigenvalues and eigenvectors. If A is an n × n matrix over F , we
defined the characteristic polynomial pA(x) by the equation pA(x) = |x ·In−A|. An eigenvalue of A is λ ∈ F

such that pA(λ) = 0. The vector v ∈ Fn is an eigenvector associated to λ if v ̸= 0⃗ and Av = λv. We then
defined the eigenspace of λ to be the set of all vectors v ∈ Fn such that Av = λv, which was easily seen to
be the null space of the matrix A− λ · In. We then calculated the eigenvalues, eigenvectors and eigenspaces

for the matrices A =

(
0 −2
1 3

)
and B =

(
0 1
−1 0

)
.

Tuesday, February 18. Snow Day.

Thursday, February 13. We continued our discussion of determinants, beginning with recalling the effect
elementary row or column operations have on calculating the determinant of an n×n matrix. In particular,
we willsutrated how this implies that the determinant id a multilinear function of its rows and columns. We
then used elementary row operations to calculate the determinant of a 3× 3 matrix.

We then discussed the adjoint formula, A · A′ = |A| · In = A′ · A, where A is an n × n matrix over F
and A′ = Ct, for C the n × n matrix whose (i, j)th-entry is (−1)i+j |Aij |, and illustrated this formula by
calculating a few entries in AA′, when A is an arbitrary 3× 3 matrix. We noted that it follows immediately
from the classical adjoint formula that A is invertible with A−1 = 1

|A| · A
′, if and only if |A| ̸= 0. We then

derived Cramer’s rule and illustrated it by solving a 2× x system of linear equations.

Cramer’s Rule. Let A be an n× n matrix with coefficients in F , and A ·

x1

...
xn

 =

b1
...
bn

 be a system of

n equations in n unknowns. For each 1 ≤ i ≤ n let Bi be the matrix obtained fro A by replacing its ith

column by

b1
...
bn

. Then, for each 1 ≤ i ≤ n, xi =
|Bi|
|A| .

Tuesday, February 11. The first twenty minutes of class were devoted to Quiz 3. Following the quiz, we
began a discussion of determinants. After calculating a few examples of determinants of matrices of different
sizes, we gave a formal definition:

Definition. Let A = (aij) be and n× n matrix with entries in F . Then the determinant of A, denoted |A|
or det(A), is defined by the following equations:

|A| =
n∑

j=1

(−1)i+jaij · |Aij | (expansion along the ith row)

=

n∑
i=1

(−1)i+jaij · |Aij | (expansion along the jth column),

where Aij denotes the (n− 1)× (n− 1) matrix obtained from A by deleting its ith row and jth column. We
emphasized that the fact that the different expansions of the determinant always give the same answer is
not an easy fact to prove, and we will just assume that all expansions in the definition give the same result.

We then discussed the following properties of the determinant, thinking of the determinant as a function of
its rows or columns. We verifed these properties for 2× 2 matrices. Letting A denote an n× n matrix over
F :

(i) If A′ is obtained form A by multiplying a row (or column) of A times λ ∈ F , then |A′| = λ · |A|.
(ii) If A′ is obtained from A by interchanging two rows (or two columns), then |A′| = −|A|.
(iii) If a row (or column) of A consists entirely of 0s, then |A| = 0.
(iv) If two rows (or columns) of A are the same, then |A| = 0.
(v) If A′ is obtained from A by adding a multiple of one row of A to another row, then |A′| = |A|.
(vi) If A is an upper or lower triangular matrix, then A| is the product of the diagonal entries of A.
(vii) The determinant is a linear function of its rows (or columns).
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We ended class by using elementary row operations to calculate the determinant of a 4× 4 matrix.

Thursday, February 6. We began class by recalling that any two bases for the finite dimensional vector
space V have the same number of elements. We recalled that this was an immediate consequence of the
Exchange Theorem given in the previous lecture. This common number of elements in a basis is called the
dimension of V. We then noted the dimensions of the following spaces, in each case by exhibiting a basis for
the indicated space:

(i) Rn is an n-dimensional vector space over R.
(ii) The space of n× n matrices over R has dimension n2.

(iii) The vector space of 2 × 2 matrices

(
a b
c d

)
over R such that 3a + 2d = 0 is a three-dimensional

space.
(iv) The solution space to the systems of equations with reduced row echelon augmented matrix(

1 0 3 4 | 0
0 1 −2 6 | 0

)
is a two-dimensional subspace of R4.

We then noted that the dimension of V depends upon the scalars over which the space is defined, by showing
that C2 has dimension two over C, but as a vector space over R it has dimension four. This was followed by
a discussion of:

Theorem. Let V be a finite dimensional vector space.

(i) Suppose S ⊆ V is a finite set of vectors satisfying V = Span{S}. Then some subset of S forms a
basis for V .

(ii) Let T ⊆ V be a linearly independent subset. Then T may be extended to a basis.

The proof of this theorem involved applications of the Exchange Theorem. This theorem gave rise to the
following corollary:

Corollary. Suppose V is a vector space of dimension n and S = {v1, . . . , vn} ⊆ V . The following are
equivalent:

(i) S is a basis for V .
(ii) S is linearly independent.
(iii) V = Span{S}.

We ended class by recalling that if v1, . . . , vn are column vectors in Fn, then they form a basis for Fn if and
only if the n× n matrix A = [v1 v2 · · · vn] has an inverse and observing that if in P (2) we wanted to show
that 1 + x, 1 + x+ x2, 3x form a basis oforP (2) the space of polynomials of degree two or less, it suffices to

show that

1
1
0

 ,

1
1
1

 ,

0
3
0

 form a basis for R3.

Tuesday, February 4. We began class with Quiz 2. After the quiz, we defined a subset S ⊆ V to be a basis
for V if: (i) Span{S} = V and (ii) S is linearly independent. Thus, S is an efficient spanning set in that
the vectors in S span V and upon deleting any vector from S, the resulting set does not span V . We gave
several examples of bases, including the standard basis for Rn. We then noted that if S = {v1, . . . , vn} is a
basis for V (or any subspace of V ), then every vector in V can be written uniquely as a linear combination
of v1, . . . , vr.

After looking at the case for column vectors in R3, we noted that n column vectors in Rn or Cn form a
basis if and only the matrix whose columns are the given vectors is invertible. We then verified this in the

particular case v1 =

 1
0
−2

 , v2 =

2
1
0

 ,

1
1
1

. This was followed by a discussion of the

Fundamental property. The number of elements in any linearly independent subset of vectors in the
subspace W ⊆ V is less than or equal to the number of vectors in any spanning set for W .

This then led to the
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Exchange Theorem. Let w1, . . . , ws, u1, . . . , ur be vectors in V and set W := Span{w1, . . . , ws}. Assume
that u1, . . . , ur are linearly independent and belong to W . Then r ≤ s. Moreover, after re-indexing the wi’s,
we have W = Span{u1, . . . , ur, wr+1, . . . , ws}. This latter property is called the exchange property.

We illustrated the Exchange Theorem by taking a space spanned by two vectors and showing directly there
could not be three linearly independent vectors in that space. The exchange property in this case was a
consequence of this calculation.

We ended class by observing that it follows immediately from the Exchange Theorem that any two bases
for a (finite dimensional) vector space have the same number of elements. We defined the number of elements
in a basis to be the dimension of the vector space. After giving a few easy examples of the dimension of
some familiar vectors spaces, we noted that the dimension of the space V depends on which scalars we are
using, by observing that C is a two dimensional vector space over R, but C is a one dimensional vector space
over C.

Thursday, January 30. We began class by recalling what it means for a set of vectors v1, . . . , vr in the vector
space V to be either linearly dependent or linearly independent. In the case where V is the vector space
of column vectors in Rn or Cn, we noted that these conditions can be expressed in terms of the solutions
to a homogeneous system of linear equations with coefficient matrix A, where A is the n × r matrix whose

columns are v1, . . . , vr. To wit, the homogeneous system A ·

x1

...
xn

 = 0⃗ has a non-trivial solution if and

only if v1, . . . , vr are linearly dependent. Equivalently, the homogeneous system A ·

x1

...
xn

 = 0⃗ has a unique

solution (namely x1 = 0, . . . , xr = 0) if and only if the vectors v1, . . . , vr are linearly independent. We then
used Gaussian elimination to show that a particular set of three vectors in R4 was linearly independent.
We also showed how to use Gaussian elimination to determine if a column vector u belongs to the span of
v1, . . . , vr and had the class work out a concrete example of this.

We then discussed the following

Basic Principle. For a subspace W ⊆ V with W = Span{v1, . . . , vr}, suppose the vectors v1, . . . , vr are
linearly dependent. Then there exists vi such that W = Span{v1, . . . , v̂i, . . . , vr}.

The point behind this basic principle is that the linear dependence assumption not only means that one of
the given vectors is in the span of the remaining vectors, but that the remaining vectors span the same space
as the original set of vectors. We then saw how to use Gaussian elimination to determine the redundant
vector and also noted that the process of deleting redundant vectors in the spanning set can be repeated until
one ultimately arrives at a spanning set of W that is linearly independent. In other words: Any spanning
set for W can be shortened to a spanning set that is linearly independent.

We ended class by defining the set of vectors S := {w1, . . . , wr} ⊆ W to be a basis for W if: (i) S spans

W and (ii) S is linearly independent. We noted that the vectors e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 forms a

basis for R3.

Tuesday, January 28. We began class with Quiz 1. After that, we showed that the intersection of two
subspaces of a vector space is again a subs[ace. This was followed by noting that R3 is the direct sum of the
spaces W1 :={ (1, 1, 1),−1, 0, 1)} and W2 :={ (1,−2, 1)}. We also noted the following:

Important Property. Suppose V = W1 +W2. Then V = W1

⊕
W2 if and only if every vector in V can

be written uniquely as a sum of vectors from W1 and W2.

We then considered the question: For vectors w, v1, . . . , vr in the vector space V over the field F , when is
w ∈ Span{v1, . . . , vr}? We noted that when V = Rn or Cn, and the vectors w, v1, . . . , vr are column vectors,
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then w ∈ Span{v1, . . . , vr} if and only if the system of equations given by the matrix equation A ·

x1

...
xn

 = w

has a solution where A is the r × n matrix whose columns are v1, . . . , vr. We also noted that any solutionα1

...
αr

 to the system of equations gives rise to the relation w = α1v1 + · · ·+αrvr. This was then illustrated

by using Gaussian elimination. We then defined the vectors v1, . . . , vr ∈ V to be linearly dependent if some
vi ∈ Span{v1, . . . v̂i . . . , vr} and noted that this was equivalent to having a non-trivial dependence relation

on the vi, i.e., there exists a1, . . . , ar ∈ F , not all zero, such that a1v1 + · · · + arvr = 0⃗. In other words,

v1, . . . , vr ∈ Fn are linearly dependent if and only if the system of equations A ·

x1

...
xr

 = 0⃗ has a non-trivial

solution.

We finished class by defining the set of vectors {v1, . . . , vr} to be linearly independent if they are not
linearly dependent. From the previous discussion, it followed that the following conditions are equivalent:

(i) v1, . . . , vr are linearly independent
(ii) No vi belongs to Span{v1, . . . , v̂i . . . , vr}
(iii) If a1v1 + · · ·+ arvr = 0⃗, for aj ∈ F , then all aj = 0

This led to the:

Important Consequence. If W = Span{v1, . . . , vr} and v1, . . . , vr are linearly independent, then v1, . . . , vr
span W efficiently. In other words, if we delete a vector vi from the spanning set, the remaining vectors do
not span W .

Thursday, January 23. We continued our discussion of subspaces of a vector space, including the following
examples”

(i) The set of solutions to an m× n system of homogenous linear equations is a subspace of Rn.
(ii) Given the vector space V , and v1, . . . , vt ∈ V , we defined Span{v1, . . . , vt} to be the set of all linear

combinations of v1, . . . , vt. This is a subspace of V .
(iii) We then noted that the space V of 2 × 2real matrices is spanned by the four matrices having one

non-zero entry equal to 1 and all other entries equal to 0.
(iv) We showed that the set of 2× 2 matrices is a subspace of V in (iii) and is spanned by the matrices(

1 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

In order to motivate the background needed to study the spectral theorems, we worked through the details

showing that the real symmetric matrix A =

(
1 1
1 1

)
is orthogonally diagonalizable. In other words, we found

a 2× 2 orthogonal matrix Q such that Q−1AQ =

(
2 0
0 2

)
, where, by definition, a matrix is orthogonal if its

columns are mutually orthogonal and have length one. Two key facts were observed that play a crucial role in
the spectral theorem for real symmetric matrices: (i) The eigenvalues of A are in R and (ii) The eigenvectors
associated to 2 are orthogonal to those associated to 0. We then briefly considered the symmetric matrix

B =

2 1 1
1 2 1
1 1 2

. We noted that its eigenvalues are 1, 4, with 1 occurring with multiplicity 2. We also

noted that eigenvectors associated to distinct eigenvalues of B are orthogonal, but two independent vectors
associated to 1 need not be. To achieve orthogonality among the eigenvectors of 1, we noted that we will
ultimately need an orthogonalization process: Gram-Schmidt orthogonalization.

We finished class by defining the sum W1 + W2 of two subspaces contained in the vector space V and
defined the sum to be direct if W1 ∩W2 = 0⃗. We noted that R2 is the direct sum of any two lines through

7



the origin; R3 is the direct sum of the xy-plane together with the z-axis; the space of 2× 2 matrices over R

is the direct sum of the matrices with trace zero together with the space spanned by the matrix

(
1 0
0 0

)
.

Tuesday, January 21. We began class by looking at examples of vector spaces, initially, the vector space R3

of column vectors defined over the real numbers. Beginning with the basic properties of vector addition,

where for v1 =

α1

β1

γ1

 and v2 =

α2

β2

γ2

, v1 + v2 :=

α1 + α2

β1 + β2

γ1 + γ2

, and scalar multiplication, λv1 :=

λα1

λβ1

λγ1

,

we discussed the following properties (and verified a few of them), all which follow from similar familiar
properties of R:

(i) The zero vector 0⃗ =

0
0
0

 has the property that 0⃗ + v = v, for all v ∈ R3. (Existence of additive

identity).

(ii) For v =

α
β
γ

, −v + v = 0⃗, where −v :=

−α
−β
−γ

. (Existence of additive inverses)

(iii) v1 + v2 = v2 + v1, for all v1, v2 ∈ R3. (Commutativity of addition)
(iv) v1 + (v2 + v3) = (v1 + v2) + v3, for all vi ∈ R3. (Associativity of addition).
(v) λ(v1 + v2) = λv1 + λv2, for all λ ∈ R and vi ∈ R3. (First distributive property)
(vi) (λ+ γ)v = λv + γv, for all λ, γ ∈ R and v ∈ R3. (Second distributive property)
(vii) (λγ)v = λ(γv), for all λ, γ ∈ R and v ∈ R3. (Associativity of scalar multiplication)
(viii) 1 · v = v, for all v ∈ R3.

We then looked at the vector space P (2) of polynomials of degree two or less over R and noted that since a
typical element in P (2) has the form α + βx+ γx2, when we add two expressions of this form, or multiply
them by a scalar, the resulting expressions look very similar to what we get when we add or scalar multiply
vectors in R3. Something similar happens, if, for example, we take three vectors u, v, w ∈ R19 and consider
all expressions of the form αu+ βv + γw. This gives a vector space that looks very similar to R3 and P (2).
These examples show the advantage of defining vector spaces in an abstract setting in a way that captures
all of the properties of particular vector spaces we might encounter in different contexts. This lead to the
following:

Definition. Let F denote either R or C. A vector space over F is a set V together with two operations,
addition of elements of V and multiplication of elements from F times elements in V , satisfying the eight
properties above:

(i) There exists a zero vector 0⃗ ∈ V satisfying v + 0⃗ = v, for all v ∈ V . (Existence of additive identity).

(ii) For each v ∈ V , there exists −v ∈ V such that v +−v = 0⃗. (Existence of additive inverses)
(iii) v1 + v2 = v2 + v1, for all v1, v2 ∈ V . (Commutativity of addition)
(iv) v1 + (v2 + v3) = (v1 + v2) + v3, for all vi ∈ V . (Associativity of addition).
(v) λ(v1 + v2) = λv1 + λv2, for all λ ∈ F and vi ∈ V . (First distributive property)
(vi) (λ+ γ)v = λv + γv, for all λ, γ ∈ F and v ∈ V . (Second distributive property)
(vii) (λγ)v = λ(γv), for all λ, γ ∈ F and v ∈ V . (Associativity of scalar multiplication)
(viii) 1 · v = v, for all v ∈ R3.

We also noted that Rn and M2(R), the set of 2× 2 matrices over R, form vector spaces over R and Cn, with
coordinate-wise addition and scalar multiplication, is a vector space over C. We ended class by noting that
in an abstract vector space, additive identities and additive inverses are unique.

We then discussed gave proofs of (some of) the following vector space properties, noting along the way
how they either follow from the vector space axioms, or a previously established property.

Proposition. Let V be a vector space over F . The following properties hold:

(i) Cancellation holds: For all u, v, w ∈ V , if v + w = v + u, then w = u.

(ii) The additive identity 0⃗ is unique.
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(iii) 0 · v = 0⃗, for all v ∈ V .
(iv) For any v ∈ V , its additive inverse −v is unique.
(v) For all λ ∈ F and v ∈ V , −λ · v = −(λv). In particular, −1 · v = −v, for all v ∈ V .

We then defined the concept of a subspace.

Definition. A subset W of the vector space V is a subspace if it satisfies the following conditions:

(i) w1 + w2 ∈ W , for all w1, w2 ∈ W .
(ii) λw ∈ W , for all λ ∈ F and w ∈ W .

After demonstrating that 0⃗ ∈ W and −w ∈ W , for all w ∈ W , we noted that all remaining vector space
axioms hold for W by virtue of them holding for V , so that W is a vector space in its own right, under the
operations associated with V - which is the standard definition of subspace. We then noted that: {(0, 0)},
R2, and lines through the origin in R2 are the subspaces of R2; {(0, 0, 0)}, R3, lines and planes through the
origin in R3 are the subspaces of R3.
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